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Original contentfromthis Abstract
workmaybeused under yvre consider two minimal models of activaid droplets that exhibit complex dynamics including

the terms of th&reative

f;mons/*“”buﬁon3-0 steady motion, deformation, rotation and oscillating motion. First we consider a droplet with a
Anyfurther distributionof CONCENtration of active contractile matter adsorbed to its boundary. We analytically predict activity
thisworkmustmaintain — dJrjven instabilities in the concentration prie, and compare them to the dynamics!wel from

attribution to the . . . . . .
authog andthetiteof ~ Simulations. Secondly, we consider a droplet of active poidiof constant concentration. In this
the work, journal citation

and DO, system we predict, motion and deformation of the droplets in certain activity ranges due to instabilities
in the polarisation eld. Both these systems show spontaneous transitions to motility and deformation

which resemble dynamics of the cell cytoskeleton in animal cells.

1. Introduction

Inanimal cells, motility and morphology are strongly coupled and are largely due to the activity of the cell
cytoskeleton. Research into these areas is broad and has many applications, from studying metastatic cancer ce
to wound healing. In order to mimic aspects of these systems we model, both analytically and numerically,
examples of active cytoskeletal material oewl to droplets. An active material i ded as driven out-of-
equilibrium by the internal energy of its constituent parti¢i¢swe use the hydrodynamic model of an active
polar" uid outlined in[2P4] to model the behaviour of such a material at long length and time scales.

Over the past decade there have been a number of calculations of instabilities and non-equilibrium steady
states in active liquid crystals; thin or 28! Ims[2, 5809], thin cortical layergL0BL3], conl ned in emulsion
droplets or vesicld§4E2 1], and simpli ed models of animal and plant cdsEP7]. In this paper we model
deforming active dropletsimmersed in a passiid using linear perturbation theory. By making justi
assumptions, we are able to predict non-equilibrium phase transitions in both of the systems we consider, and
predict how the droplet deformation couples to these. These analytical calculations are presented for the three-
dimensional case and also repeated for the two-dimensional analogue whedxwalitatively similar results.
Numerical simulations use the two-dimensional Immersed Boundary method yseHamd are directly
compared to the two-dimensional analytical calculation.

The models presented here are relevant to active syisteitng(constructed using techniqueqd EBB31]) as
well mimicking aspects of cell dynamics. The two cases we consider correspond to two limits of active
cytoskeletal behavio(sed gurel) thatrepresent the minimum degrees of freedom required to observe
interesting out-of-equilibrium dynamics. In both cases we consider a 1-component model used oridiffally in
which allows us to investigate the coupling with droplet shape dynamics analytically. The linear stability analyses
are restricted by assumptions which enable an analytical understanding of the mechanisms involved in
producing the observed behaviour in numerical simulations.

Firstly, we consider an isotropic layer of contractile active materibheakto an interface between two
" uids, which has physical similarities to the actomyosin cortex in cells. The stresses generatetist&xtibie
plane of the interface giving rise'tows in the surroundingjuid and deformation of the interface itself.
Interestingly, diffusion of the active particles through the bulk can resultin a change in which mode of the
perturbation has lowest critical activity, from a single peak instability driving droplet motion to higher modes
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Figure 12D schematic gB) active' uid interface: active concentratioan the droplet interface coupled to the internal
concentratior. (b) Active polar droplet: constant density of actilaments with local average polarisatip(red arrow$. Blue
arrows indicate active contractile force dipoles.

which produce symmetric deformation. Furthermore, simulations show that advection through the bulk can
stabilise such modes. This suggests that droplets with an active interface could spontaneously deform and
possibly divide due to the feedback from'thuéd " ow.

Secondly, we consider a highly ordered active polar liquid crystatiedimside d uid droplet. In this case
the polarisation gradients direct the internal stresses giving fig&tbow. A polar anchoring condition atthe
interface means that the deformation of the droplet and polarisagtthare strongly coupled. Wad in this
case there is a separation of swimming and stationary deforming modes, such that extensile activity destabilises
the defect position and results in a swimming drop, whereas a contractile activity stabilises the centred defect
position and gives rise to deformations of the interface.

2. Active" uid interface

Inthis section we considet aid droplet coated by active particles on its interface that are isotropically ordered.
Such systems have been found to self-organisitmoexperiments using reconstituted active cytoskeletal
material contained in vesicles or drop[&tg 33]. These experimental systems are a useful tool for
understanding the more complex dynamics of cells. The model in this section makes predictions of interesting
active phenomenaincluding symmetry breaking, and droplet deformation, that are relevaheid thfecell
mechanics.

2.1. Model

We consider auid droplet described by an interfacial surfacgeparating the containédid domain 8. and
external' uid domain 8 with viscositiesi; and 1, respectively. We tlae a concentration of active matter

c( ,R, H)Bntheinterfacé ,whichalters the dropletsurface tensiduchthatH , H.c Bd/2. gis

the bare surface tensiofy,is the activity( [,  Ofor contractilg andBis a passive repulsion force. This higher
order repulsive term represents passive pressure, similar to fha, which parametrises the compressibility
of the activé uid on the interface. We denote the effective surface terigion , H.co  Bg/2 whichis

the value of in the stationary state.

The force density onthe dropletinterfaceisthen: L ( s )8 whered < ni{ ,R, t)@ the outward
surfacenormak)  t ,R, t)@re the orthogonal surface tangentvectdrs, <amis the local curvature,
and ¢ (8a «Jisthesurfacegradient. Itisusefultd de the effective activity [, Bgfwhichdé nes
the scale of the fordefor small deviations of the concentratiofiom . Thus, the interface has net
contractility forf 0.

The only forces acting on the system originate at the droplet suirfagéh positionR ~ R( ,R, 1)@
assuming thisis single-valued with respect to the angular coordfhdtesThus, the resulting force density in
the"uidisfe(r, ,R,t)G F [r R , ,t)].\Reigore inertiataking the low Reyndismber limit,
Ré=10, thus the incompressibleid"ow( 4av 0)is described by Stok@sjuation
l, 2w fex P 0,wheren!=10,1denotesthedomaif.or 8,v v(r, ,R,t)&the"uidvelocity,
fext  fexqr R, t)@enotes any external force densitiesBnd P(r, ,R, t)@ the hydrostatic pressure.
We take the limit of a zero-thickness interface and asSumwend stress continuity between the tids 8;
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and 8. This means the active particles act as an active surfactant, rather than a thin viscasirgger 1D
13,26, 27]), which allows us to study the dynamics of deformation in a 3D viscous environment analytically.
The evolution of the surface concentratawith respectto timeis:

¢ sd&p) DEc kic &S 1)

whered & tsvp Vv(r R, R, t)Gtheinterfacéow velocityD isthe diffusion constantforthe active
particles ont , andkg, o are binding and unbinding rates of the particles to the interface. The concentration of
unbound particles inthe bulk of the dropisdenot&d (r,S, ,t). Bnding®@ccurs atthe interface where we
denote the concentration ofunbound prticlg§s  (r  R,S, , t). Note that, has unitsGf velocity, as it
contains the adsorption depth parameter. We assume that the active particles are insoluble in thewidternal
and so the evolution of the bulk concentratibis given by:

G (VA <$ Dg? S )

with the boundary conditiodgn & )< koS  keCatr!=8R, to ensure conservation of mass. The
parameteD;is the bulk diffusion constant of the active particles. Here we assume that the active particles only
generate stresses at the interface, so the bulk concentration acts as a buffer to recycle the surface concentration

2.2. Linear stability analysis

Inthis section we present the results of a linear perturbation to the stationary ground state of the droplet. The
systemisin a stationafyelocityv  0) steady state when the interface is sphefligald radiudR ~ Rg) witha
homogeneous concentration of active parti@es @). Thenthe bulk concentrationi§ Kot G/ kn inside
the drop, and the hydrostatic pressure inside is Ry, (2 I—"rQ))/ RwlhereRy is the stationary state
pressure inthe externaliid. We perform alinear stability analysis by applying a small perturbation to the
variables dened at the interfacRandcof the form:g g, ,dcp 'm o, OY'E, ) v!hereY{“ are th®k
spherical harmonic functionsanf,,  g.To! rstorder, the resultingow is given by Lant® solutions for
"ow around a sphere, which can be expressed as vector spherical haf#triesving the Stokes equation
with " ow and stress continuity conditions at the dropletinterface gives expressidﬁ,@ fasdénedin[34]

and supplementary information appendixiAterms of l§, and R,. The perturbation on the interface is also
coupled to a perturbation of the internal concentratisuch that

! d |
s #9% " &g t)Y,mg
"Kon o m 1 %
We obtain analytical solutions for the stability by assuming a quasistatic solutiér(taking s 0). This
assumption corresponds to a fast relaxation of the bulk concenteatiompared to the timescale of evolution
of the surface concentrati@nAt linear order, the solution foE simply satises the diffusion equation with a
" ux condition at the boundary:

kot ROEE | 1 *
Dd konRoz Rot+

This solution enables us to predict the effect of the feedback by diffusion through the bulk analytically. The full
solutions to the coupled linear equations are solved exactly with Bessel functigfhsjahawever these
solutions do not permit an analytical calculation of the stability condition, hence we do not consider them here,
butinstead compare our approximate analytical solutions directly with the full dynamical simulations.
Finally, we evaluate the coupled system of dynamic equations for the concef¢@tiaton(1) in
sectior?.l) andradiusR vy . h(the normal velocity at the interfage ! rstorder in the perturbations. We
! nd instabilities by looking for positive eigenvalues of the stability matrix that rékme$¥ito Eand Rto
! rstorder in the perturbation&ee supplementary information appendix A for further details of this
calculation. From this analysis wend an instability threshold for the effective activity [ | wher®

2+ ‘D DaRo kot
_2| — L]
2@ MR T D09 keR:

*

©)

where+ (o | j)/2isthle mean viscosity of the internal and extetnéd. We see thaB is independent of

the effective surface tensidg@which shows that the coupled droplet deformation does not contribute to the
symmetry breaking threshold. However, the corresponding maximum eigenvalue of the stability matrix does
weakly depend onthe effective surface tensfdor | 1. This weak positive relation suggests that the

instability should evolve more quickly in large surface tension dropsiwhehin this linear limit there is no
contribution from the advection term i(2) and the second term i{3) (proportional to the binding ratgsillways
increases the threshold. This is because the binding terms allows the concentration on the interface to be recycle
by unbinding and diffusing into the bulk of the drop.
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Figure 2 Maximum mode numbetmax plotted against activity in normalised units for increasing values of the droplet radius. Dashed
lines show numerical solution and solid lines show analytical approximation®sing. Parametersusecs 1, i 1,
D!=10.05,1, I; 1landke 0. Insets showow(blue arrowyand active concentratia{colour gradient from purpléow) to
yellow(high)) to linear order on the perturbed interface fdid!=!1 mode andii) I'= !2 mode respectively. Deformation of the
interface in(ii) is calculated by solvirl§ ~ Ofor Rgiven the form of, and is exaggerated for visibility using srigdl

The stability analysis shows how the droplet will initially deform. This deformation is characterised at short
times by the maximally unstable magdgx, which can be found exactly when binding is not inclu(test
I gure2and supplementary information appendix At linear order the instability isindependent of the
spherical harmonic parameter Genericallylnax predicts that as contractile activity is increased, the more
concentration peaks will be initially formed on the droplet surfbgare2). The total droplet activity scales with
droplet size, and dg,.« is more sensitive to the activity parametén larger droplets. Thusiitis easier to observe
modes with smallin smaller droplets, where the dynamics are less sensitive to small changes in the activity. Note
thatonly thel!=!1 mode(k!=1in 2D) produces net propulsion of the drop(ée. *, RitdS v 0), sothe! rst
unstable mode corresponds to front-back symmetry breaking of the dropldéépro

As shown in supplementary information appendix A, one can approximate the maximally unstable mode
| max @nalytically by solving  Ofor R,.. This approximationimposes thegilways assumes the steady state
shape for a givelnxed concentration perturbatioi,,, (plotted in! gure2). Physically, this assumes that the
shape dynamics are much faster than the concentration dynamics, and so can be taken to be quasistatic.
Interestingly, while this assumption does not represent the full coupled dynanfigsaofd R, it does
reproduce the critical activity threshold, and also approximates the mode structure well.

When bindingisincludedk.¢ Vv 0)the dispersion relation changes, and as we seq®)dhe active
threshold is nonlinear ih and hence highg€non-swimming modes can have lower activity thresholds than the
[1=11(swimming mode.

Within the assumptions made here, the binding and unbinding dynamics always increase the activity
threshold. We see thatifthe bindingisflagt  Ds the critical activity takes the same form as the 1D model
considered ifil1] where the active threshold is always minimal'fot 1 and is proportional to the effective
diffusion parametem  (Dkon  DsKof) / kon. However, for fast bulk diffusion, geometrical effects become
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Figure 3 Phase diagram of 2D simulation results for an active isotropic interface, each dot represents a single simulation run. |nsets
show steady statew (blue arrowpand concentratiohelds(colour density, black to yellgior the different phases. Low values of
koi transition from stationargblack squargso motile (red circle}with a single peak in concentrati@hown in(a)). Feedback from
the internal concentration produces intermediate oscillatory {raggenta stajand a stationary 2-peak stéidue trianglef Solid
lines of increasing gradient show predicted activity threshold for nkbdék, 2(red, blug. Simulation parametersy 1, Ry 1,

i 1,D!=10.05Ds 051, I 1

important. A single peak in the interfacial concentration gives rise to a concentration gradient in the bulk driving
diffusion away from it. As the number of peaks on the interface increases the concentration gradients are more
localised to the surface, and diffusion has a smaller effect. In this regime, the minimum critical activity can
correspond to multi-peak moddgls 1) when the contribution from bulk diffusion is sigréant. This is
analogous to thendings in[ 8] for a one-dimensional actiVelid consisting of two-components.

The droplet shape instability is enslaved to the concentr@mB is independent df), so we can estimate
how the shape will deform due to certain concentration distributions on the interface by $lvirfor R
(forl  1).Plottedin! gure2is an example of these deformations and the assotiaetetb linear order. In
orderto calculate the resulting steady state dynamics we require numerical simulation.

2.3. Results and comparison with simulations
We testthese analytical results against the 2D simulations develpp@dihese use an Immersed Boundary
method[35, 36 to represent the active interface explicitly as a Lagrangian mesh which is coupled to the
Cartesian mesh for the 2uid via a numerical Dirac delta function.

Repeating the stability analysis in 2D, we now take perturbations of thejformgy, os,;d 1€¥RThe
calculation reveals that surface tension gradients do not deform the droggais #iund i 37]) however the
concentration dynamics remain very similar. We compare our predictions in 2D to the results of the Immersed
Boundary simulations ihgure3. We run simulations varying the activity, binding régkingkos ~ kon) and
diffusion parameters. At zero binding we observe two steady phases, a stationary state and a steady moving stat
3(a) separated by the thresholl,p which agrees well with the expected analytical result

+. Dk DaRo koft

4oy = =2
B0 CO%RO (DK  konRo)*

*

(4

This moving steady state due to a surface tension gradient is also observed for the the self-propelled droplets
studied in37, 3§]. The equations of motion we ugee Model sectigare similar to those for the self-propelled
droplets studied ifi37, 38 and hence some of the same dynamical behaviour is observed. However, our model
predicts new stable states and instabilities corresponding to pure deformation and division as discussed below.
This arises due to the advection and diffusion of active particles through the bulk of the drop. Uiliké&h

the model here conserves the active particles within the drop making it more relevantto cell cortex dynamics.
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We next calculate the maximum mode numkggx (see supplementary information append)xlA the
regime where we predikf,.x 2, our simulations show initial formation of 2 peaks in droplet concentration.
Without binding, these peaks are unstable and always coalesce to fdiam preicted for ‘aat active viscous
layerin[8]). Inthis case, the droplet swims persistently and steadily with the concentration peak atits rear. A
decomposition of the Fourier modes of this steady state shows that'tleédfaow is puller like, i.e. its dipole
momentis such thatit pulls the surroundihgid inward and pushes it outward along the axis perpendicular to
its motion. The activity threshold predicted compares well to that in the simulations for small values of the
binding. Atlarger binding rate, the interior dynamics is not completely diffusion dominated, and the critical
activity is underestimated due to the approximatiordsof 0. Aswe increadeys and Twe see that eventually
the droplet becomes immobile with 2 stable peaks in the concentfagdrgure3). In the intermediate regime
the droplet undergoes@anderinginotion as the concentration prte oscillates between a single peak and two
peaks. Equatiof) predicts a non-trividk dependence of the active threshold as binding terms become
important. For the parameters used igure3, this can be seen by the crossing of the lines fddthElL and
k!=12 modes, meaning that the minimum critical activity is not necessarily for the lomeste(k= 1). Note
thisis very similar to the prediction in 3D ().

The simulation results ihgure3demonstrate that as the binding rate increases, advection of the
concentration through the droplet bulk becomes more important. The advection can stabilise the two peaks at
diametrically opposite points on the circle, resulting in a stationary droplet. However, we see thatin 2D the drop
does not deform, as the radial forces from the activity gradients are always cancelled by the hydrostatic pressure
P. Thisis not the case for the full 3D system where we expect concentration gradients to deform the droplets as
shownin! gure2. Nonetheless, the 2D simulations show that advection can stabilise the 2 degkration,
which in 3D would resultin symmetric deformation and potentially division of the droplet. Such a 3D
simulation is beyond the scope of this work, but would be useful for quantifying the full 3D morphology. Recent
work has shown that non-adherent cells exhibit a swimming state similar to the motion described here, and so it
would be of interest to test in future work whether the steady state shape in 3D for the model here resembles the
(Qear shap@bservedifi27,39.

3. Active polar uid droplet

In this section, we consider a dropldied with an active polar liquid crystal of constant density everywhere.
Realising this system experimentally in droplet systems requires high concentrations of active material so that
the polar to isotropic phase transition is localised to the droplet centre. This has been anhigngdr

microtubule based active nematics but only in thims thus faf 30, 31]. Inthese systems the measured order
parameter is approximately constant everywhere exceptin the vicinity of topological defects. Thus we consider
the limit where the activeuid is strongly polarised and restrict the analysis to only the orientational degrees of
freedom of the active liquid crystal, and do not consider the density or polarisation magnitude degrees of
freedom.

3.1. Model
We utilise the model of an active potarid developed by Kruss alin [2PX] which has similarities to other
continuum models of the cytoskeleton on surfgeesh a$40, 41]). We consider the case where the activd
has strong local ordering and is far from the isotropic phase stghat 1 everywheréexcept at defects where
pisunde ned. This approximation is commonly used to model active and passive liquid crystal systems
analytically.

IntheRe=10limit the total stress in the active pofarid, T ¢ T4t .2hgsviscous, dibtortion
and active contributions respectively where:

PO T ol Gv), s s
¥ Jah o gh S(ph pH T
i TR [

The viscous stress is the respons®t@assuming a Newtonidmid. The distortion stress is that of a passive

polar liquid crystal due to deviationslitfament alignment, where the perpendicular part of the mole¢elar

h; F/Epj( j Epp éEtsto minimise the free energy functiokal S 4 d%f with respect t, given

p! 1 TheEricksenstres§y f; [ f/ (jR)HE; BR) i isageneralisationof theBydrostatic
pressure for complexiids. Finally, the active stress represents the active dipolar force and thus is second order

in p.
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The free energy functionBbives the equilibrium properties of the system. Here for simplicity we use the
one constant approximation of the Frank free energy:

35 . 2 (Xl (Xl
F Fro(ip)? 7 odsh s , O

whereKis the elastic constantahp! 1. Since we are modelling aite droplet, the surface terms are
important. We consider normal anchoring of thements to the interface, with surface distortion free energy
densityf, W (p a® 1)2 Thisform of the surface free energy includes the spontaneous splay term which is
allowed in polar liquid crystajg 2.

The polarisatiori uxis

6 (va op =ép><t__waﬂ(,o 6( )

whereX (iys jV)/Zand" isthe rotational viscosity.

3.2. Linear stability analysis

We contrast the model of an active interface to that of a droplet of active'pideof constant density. In this

case, rather than the concentration of active particles, the important degree of freedom is the polarisation vector
p denoting the average direction of the contrattidgenents in the uid.

We calculate the linear stability of the dropletin the limit of strong anchatind  d in order to study the
effects between the coupling of droplet morphology and polarisation. This equates to the boundary condition
p @atr R.Inthecase ofweakornoanchoring, instabilities can occur for both extépsil@) and
contractile([ Q) active polar drops as shown analyticallyi] and in simulation$15. The condition of
! xed polarisation at the interface inhibits certain deformations of the polaridaidat low activities and so
the preferred deformation modes are those which can couple to the droplet deformation. Thiswas
demonstrated in 2D simulations of active nematic drofp$&h Here we explain this mechanism analytically in
a3D" uid drop by linear stability analysis. The polar nature of the anchoring prod@eeshedgehdd
topological defect at the droplet cenfoe a radial defect with 1 winding number in 2I), giving a simple
analytical description of the stationary state. Thus we are able to make analytical predictions about spontaneous
symmetry breaking in these systems even in the general 3D case.

Unlike the case of an active interface, the attinehere! lls the drop, and hence active and passive stresses
are generated in the bulk. The stationary steady state is given by the polapsat@R Ry, andv 0.

To perform ageneral linear stability analysis, one would need to consider generic perturbations to both the
polarisation eld and interface and study the coupled equations for their evolution, this is not analytically
tractable in this case. However, we can perform restricted perturbations that we expect to be representative of th
dynamicsin a particular limit. We consider the case where the polarisafibis enslaved everywhere to the
shape of the boundary by the anchoring condition. This corresponds to the limit where bulk instabilities in the
droplet are suppressed by its giz= small dropledsin larger dropletgor equivalently for smallé€) the
dynamics of the polarisatidreld becomes more independent of the anchoring condition, and we expect this
approximation to break down.

Due to the symmetry of the stationary state! wat need to consider the special case of the translational
mode of perturbation, corresponding to the !1 spherical harmonic mode. Without loss of generality we
consider a perturbation along tkelirection(m!=10). This mode implies a translation of the hedgehog defect
away from the droplet centre. If we assume that the defect had sealenite core radiuf.then we can treat
the liquid crystal as contained between two boundary conditions, one at therdefégtand one at the droplet
interfacer Ry zcogE), where E iga small displacement of the defect position from the droplet centre
along thez-direction. The calculation is done in the reference frame of the defect so that it coincides with the
origin of our coordinate system. In the equilibrium cé§e 0), we can write a polarisatioreld to! rstorder
that minimises the bulk free energy(#) by solvingh ~ Ofor these boundary conditions:

r R

P, & stmﬁ)eli R (7

This method equates the defectto a small colloid pithar) homeotropic anchoring, and in the strong

anchoring case we expect the free energy minimum to correspond to the defect being positioned at the droplet
centre as we observe in simulations, and is reportedlid5. Using the polarisation in equati¢r) we can

estimate what the bulk free energy increase will be for such a deforrfuigtaiis in supplementary information
appendix B
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Figure 4 Active part of thé ow! eld(blue arrow}to linear order in the perturbations fdia) defect positioffinner sphergdisplaced
inthe vertical directionwith] 0 (extensile activijy(b) I'= 12 mode perturbation of the interface assuming strong anchoring of the
polarisatiori eldwith [  0(contractile activity The perturbations are made autially large for visibility here.

ol ()2[4 3 4<og )] <O(B) R

where<« Ryp/R isassumed smallinth@al approximation of the equation. Th~ is positive for all,

suggesting that the free energy minimum corresponds to the defect being positioned at the droplet centre. Note
that this polarisatioh eld is only valid td rst order in E and so higher order terms could affect the form of the
quadratic term here.

We now introduce a small activity such that equatio(v) remains a valid approximation for the form of
the polarisation eld, then we see that this gives rise to active forces in the drop. We solve the force balance
equationgomitting passive contributions, see supplementary information appettix Bd the active
contribution to the" ow. We then integrate tand the active contribution to the velocity of the defect ogend
dropletvyop. The relative velocity of the defectis then:

(2)9 ) <(lg Qéz- I I 9
2,3, 2) I
We see thatextensile actiiy 0) always results in arelative defect velocity that is in the same direction as the
initial defect displaceme(dlongé,), as shown byygure4. This implies that extensile activity will destabilise the
defect from the centre and give rise to motion of the droplet as a ilubieh to linear order is also alomg).
Conversely, we expect contractile activity to stabilise the defect at the droplet centfegas tiesulting from
contractile activitf [  0) actto restore the defect back toits stationary position at the droplet centre.

Thus, within the assumptions made above, one can predict that the active polar droplet will break
translational symmetry spontaneously above darite activity. This mode of symmetry breaking is
independent of surface deformations atlinear order, and so its critical activity threshold should not depend on
the droplet surface tension. Hence the critical activity threshold will only depend on the increase in the passive
free energgequation(8)), which goes to bnite value in the limit of a point defect and scales as the inverse of the
dropletsize. In general, the paramétisrdifl cultto dé ne, whichis a consequence of the assumption of
Ip! 1, which breaks down around the defect. This can be avoided by using a Landau-De Gennestype free
energy description for the passive part of the dynamics such that there is an polar-to-nematic phase transition at
the centre of the droplet. However, such an approach is not analytically tractable, as it requires solving nonlinear
partial differential equations for the radial dependenge Qiualitatively though, the predictions here are
consistent with what is observed in the simulations.

For perturbation modeks  1the" ow at the origin will always be zero, and so one can assume thatin the
strong anchoring limit the defect will remain centred at the origin. We again require an assumptiomfor the
dependence of the polarisation perturbation. Takg | 0, we can write ageneralform & r r" for
arbitraryn . 0. Importantly, for aln, the activé ows always give rise to an instability for 0(contractilg.
Considering only activeows, the maximally unstable perturbation isribr 0. Thus, below we consider only
the results of this mode, which allows us to consider the dynamics in the limit whétathent polarisation at
the interface and in the droplet are strongly coupled. However it comes at the cost of reducing the quantitative

Fouio (8

Vo %W \op [E
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Figure 5.Spatial change in splay induced by boundary pertubation. Dotted line indRjated solid line the perturbed interfaRe
Increased splay in regions of higher curvature drive outivang, coupling to further increase in boundary curvature. The black
arrows indicate polarisation direction while the colour gradient indicates the splay magdritagetelative to its value in the
stationary state.

power of our predictions, and is an important restriction to the dynamics considered. Note, in two-dimensions,
the assumption!=10 gives rise to an imite passive contribution to the dynam{psoportional toK ) and so
we usa!=!1, which appears consistent with what is observed in simultions.
Inthe strong anchoring limit, the polarisation has to match the perturbed interface nomwal Bto ! rst
order, such that

5 e =m0 vr(r)S (10
Poe e ey T YEGRIEE

We calculate the resultifigws to! rstorder in R. Sincep is enslaved to the deformation we then only need to
consider the radius dynamics giverffor details see supplementary information appendlix B

In this strong anchoring limitwend thatthe dropletis unstableif [ p  0,Be.the activity threshold,

B, is always contractile. The threshdklincreases linearly withandK. Repeating the linear stability analysis

calculation in 2D shows the same qualitative prediction, where this time wétake as this is the leading
order contribution allowed. The analytical expressions for the activity threshold are given in supplementary
information appendix B and a full discussion of the eigenvalues of the general stabilityforatr@ak
anchoring can be found ii43.

The result of this analysis is somewhat surprising, in this strong anchoring limit we exlecttimode to
be unstable to extensile activity, whereas the higher modes of deformation are unstable for contractile activity.
This suggests that, when our assumptions hold, we should see translational symmetry breaking with the defect
moving to the droplet front for an extensile drop and symmetric modes of deformation for a contractile drop
(seé gured). This active threshold scales linearly Witind 15, demonstrating the importance of the coupling
of the morphology to the polarisatidreld. Contrast this to the case of the active interface where the shape does
not affect the threshold for a phase transition.

This contractile instability can be understood physically by considering the splay in the drop due to
perturbations in the interface curvature. High curvature couplesto increased splay which couples to outward
" ow, further increasing the curvature of the interface and hence the splay. A sketch of this id gjussbin

3.3. Results and comparison with simulations
Inthe 2D simulationgsed guret) we see symmetry breaking corresponding té&thél mode for extensile
activity resulting in a steady motile state, as predicted by the stability analysis. This is characterised by the defect
centre moving to the front of the drop and is independent of the boundary deformatarhencerg). Due to
the extensile nature of the activity this dropletis a pusher, pushidgut along its axis of motion and thus
elongating parallel to its motion.
Conversely contractile activity stabilises the defect at the droplet centre and we didsdBmade
instability characterised by deformation of the droplet infianbbel3hape. Itis also observed that this phase
behaviour breaks down as the valu&gRZis reduced. In this limit the distortions in the droplet bulk are not

9



10P Publishing

New J. Phy$8(2016 123016 C AWhlteld and R J Hawkins

Surface Tension y

Figure 6. Active polar drop stability diagram. Stationary statgite, square dojsspontaneous symmetric deformatigutue,
triangular dotyand spontaneous motilifyed, round dotyare observed. Dashed line shows analytical prediction from linear stabjlity
analysis. Insets show the polarisatietd p (black arrowyinside the droplet following symmetry breaking with defects labelled by,
blue dots. Note that due to the simulation method, the polarisdtedd in the simulations changes continuously figh  linside
thedroptolp!  Ooutside, hence the polarisation i$ ded everywhere i) and(ii). Parametersuseldt=10.1,R, 1,

[P 1L,W(=!50andO 1.1

strongly coupled to those at the interface and so more complex distortions can occur withdugsigdioplet
deformation. Our analytical calculations do not predict this as we assume a formrfalghendence of the
polarisation such that itis strongly coupled to the curvature. This behaviour goes beyond the scope of the
analytical work here as this corresponds to a transition @aive turbulend®tate, as numerically simulated
in[29.

Finally, we also observe rotational steady states in the simuldioestensile activity when using
O 1.)whichcanbe characterised exactly by rotationally invariant distortions of the polarisatfi) 3],
but these are not predicted for the parameter range udeglires.

4. Discussion

We have used analytical linear stability analysis and numerical simulation to characterise instabilities in active
droplets and their resulting non-equilibrium steady states. Recent advances in experimental techniques mean
that active gels of cytoskeletal material can be prodoegtdo. The predictions of our active interface model

could be tested by adsorbing an isotropic actin gel onto the interface of an emulsion drop containing myosin and
ATP[32,33. We predict an activity threshold for spontaneous motion, and a further continuous transition to a
stable symmetric state mediated by advection of motors through the droplet bulk. We predict that in 3D this
symmetric cohguration will be coupled to deformation of the drop, however this cannot be observed in the 2D
model.

The active polar drop model we use only predicts some of the dynamics of a real active polar drop system asii
ignores the density and ordering magnitude degrees of freedom. However, this model system gives us an insighi
into the intrinsic instabilities when droplet deformation didment polarisation direction are strongly
coupled. In particular, there is a contractile activity threshold that is linearly dependent on surface tension, above
which the droplet spontaneously deforms into a characteristic dumbbell shape. We also see persistent motility in
the case of extensile activity such that the droplet acfaeharcompared to thpullertype motion exhibited
in the active isotropic interface model. This is consistent with previous active droplet models that show
contractile activity resulting in droplets which prdlersand extensile activity resultingpnshers
[13,15,18 20, 21]. Aninteresting future extension of this work would be to consider coupling between both of
the active phases studied here within a single drop.

10
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The! nite active systems we study improve our understanding of howneament and deformation affect
steady state dynamics. Additionally, we see the importance of feedback, driven by advection through the droplet
orthe internal orientational order, resulting in more complex dynamics. These results should prove useful in
characterising future experimentsiarwvitrocytoskeletal networks and be useful in developing more complex
models of multicomponent active systems in nature.
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